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Motivating example:
Medical time series with two classes
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Dataset smni9 eeg data from UCI Machine Learning repository
(Dua and Graph 2017)



Motivating example:
Electroencephalogram (EEG) process illustration

Picture from Nagel 2019



Motivating example:
Separate two classes (healthy vs. alcohol use disorder)
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Using SOME distance between time series



Distance between two trajectories
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Define distance between time series
based on Gromov-Wasserstein distance of Mémoli 2011

View two trajectories as metric measure spaces:
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NOTE: Even if both trajectories lie in the same space (e.g. R2),
this technique purposely ignores it



Define distance between time series
based on Gromov-Wasserstein distance of Mémoli 2011

Mémoli 2011 defines the p ∈ [1,∞) Gromov-Wasserstein
distance between metric measure spaces by

GW (X , Y ) :=
1

2
inf

µ∈C(µX ,µY )

(∫
X×Y

∫
X×Y

|dX (x, x′) − dY (y, y′)|p dµ(x, y)dµ(x′, y′)

)1/p
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y y'

Note: Non-convex program



Define distance between time series
based on Gromov-Wasserstein distance of Mémoli 2011

To overcome non-convexity issue, two main approaches exist:

1. Regularize GW objective (Peyré, Cuturi, & Solomon 2016)

Disadvantages: Still non-convex

Advantages: Convenient gradient descent (used in Demetci et
al. 2022 for bio application)



Define distance between time series
based on Gromov-Wasserstein distance of Mémoli 2011

To overcome non-convexity issue, two main approaches exist:

2. Replace GW it’s lower bounds (Mémoli 2011, Chowdhury &
Mémoli 2019)

Advantages: - Convex programs → can be solved exactly!
- Amenable to statistical analysis (Weitkamp et al. 2022)

Disadvantages: how far is given lower bound from actual GW ?



Define distance between time series
based on Gromov-Wasserstein distance of Mémoli 2011
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Local distribution of distance at x':

distribution of 
Local distribution of distance at y':

distribution of 

The Third Lower Bound (Mémoli 2011, Chowdhury & Mémoli
2019) would compare ALL local distributions



Define distance between time series
based on Gromov-Wasserstein distance of Mémoli 2011

We propose to pick ONE particular local distribution:
local distribution at the start of the trajectory

rX
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rY

Our program reads: for any p ∈ [1,∞),

GWτ (X ,Y ) := inf
µ∈C(µX ,µY )

(∫
X×Y

|dX (rX , x)− dY (rY , y)|p dµ(x , y)
)1/p



Properties of GWτ distance between time series
The object

GWτ (X ,Y ) := inf
µ∈C(µX ,µY )

(∫
X×Y

|dX (rX , x)− dY (rY , y)|p dµ(x , y)
)1/p

satisfies:

1. GWτ is an upper bound of GW .
Open question: TLB ≤ GW ≤ GWτ

2. GWτ is equivalent to Wasserstein distance between local
distributions of distance (Mémoli 2011) at the start of each
trajectory

3. GWτ is a metric on the space of (certain) equivalence classes
of trajectories

4. Similar construction is defined for graphs in Le, Ho, &
Yamada 2022

5. Can be computed in linear time (time series of the same
length) or quadratic time (different lengths)
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Performance of GWτ distance between time series:
EEG dataset
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Performance of GWτ distance between time series:
1-Nearest Neighbor classification of UCR Time Series
Classification Archive data (Dau et al. 2018)
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Performance of GWτ distance between time series:
3D Lotka-Volterra dynamical system (Xiao & Li 2000)
simulated data

Class 2

unstable  focus

at (1,1,1)

Class 1:

stable focus

at (1,1,1)

Class 3:

unstable node 

at (0,0,0)

Simulated data:
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from Xiao and Li 2000
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Performance of GWτ distance between time series:
data from Dawes lab (Ignacio et al. 2022)
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Top: picture from Coffman et al. 2016



Embedding result
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Averaging result: on the use of
Fused Gromov-Wasserstein barycenters of Vayer et al.
2020
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End of Presentation

Thank you!

Questions?
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