Scalable Gromov-Wasserstein based comparison of biological time series

N. Kravtsova¹ R. L. McGee II² A. T. Dawes^{1,3}

¹Department of Mathematics The Ohio State University

²Department of Mathematics and Computer Science College of the Holy Cross

> ³Department of Molecular Genetics The Ohio State University

Paper: Kravtsova, McGee II, Dawes (2023), Bull. Math. Biol.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Motivating example: Medical time series with two classes

Dataset smni9_eeg_data from UCI Machine Learning repository (Dua and Graph 2017)

3

Motivating example: Electroencephalogram (EEG) process illustration

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Picture from Nagel 2019

Motivating example: Separate two classes (healthy vs. alcohol use disorder)

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

▲□▶▲□▶▲≧▶▲≧▶ 差 のへ⊙

Euclidean

▲ロト ▲母 ト ▲目 ト ▲目 ト ● ○ ○ ○ ○ ○

イロト イヨト イヨト イヨト

æ

DTW

・ロト ・ 同ト ・ ヨト ・ ヨト

æ

▲□▶ ▲圖▶ ▲園▶ ▲園▶ 三国 - 釣ん(で)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

View two trajectories as metric measure spaces:

NOTE: Even if both trajectories lie in the same space (e.g. \mathbb{R}^2), this technique purposely ignores it

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Mémoli 2011 defines the $p \in [1, \infty)$ Gromov-Wasserstein distance between metric measure spaces by

$$GW(X,Y) := \frac{1}{2} \inf_{\mu \in \mathcal{C}(\mu_X,\mu_Y)} \left(\int_{X \times Y} \int_{X \times Y} |d_X(x,x') - d_Y(y,y')|^p \, d\mu(x,y) d\mu(x',y') \right)^{1/p}$$

 $\mu_X = \begin{pmatrix} 1/5, & 1/5 & 1/5 & 1/5 \\ 1/5, & 1/5 & 1/5 \end{pmatrix}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 $\mu_{Y} = \begin{pmatrix} 1/4 & 1/4 & 1/4 & 1/4 \end{pmatrix}$

 (Y, d_Y, μ_Y)

Note: Non-convex program

To overcome non-convexity issue, two main approaches exist:

1. Regularize GW objective (Peyré, Cuturi, & Solomon 2016)

Disadvantages: Still non-convex

Advantages: Convenient gradient descent (used in *Demetci et al. 2022* for bio application)

To overcome non-convexity issue, two main approaches exist:

2. Replace *GW* it's lower bounds (*Mémoli 2011, Chowdhury & Mémoli 2019*)

Advantages: - Convex programs \rightarrow can be solved exactly! - Amenable to statistical analysis (*Weitkamp et al. 2022*)

Disadvantages: how far is given lower bound from actual GW?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $\mu_X = \begin{pmatrix} 1/5, & 1/5 & 1/5 & 1/5 \\ & & 1/5 & 1/5 \end{pmatrix}$

 (Y, d_Y, μ_Y)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 $\mu_{Y} = \begin{pmatrix} 1/4 & 1/4 & 1/4 & 1/4 \end{pmatrix}$

Local distribution of distance at x': distribution of $d_X(x', \cdot)$

Local distribution of distance at y': distribution of $d_Y(y', \cdot)$

The Third Lower Bound (*Mémoli 2011, Chowdhury & Mémoli 2019*) would compare **ALL** local distributions

We propose to pick **ONE** particular local distribution: local distribution at the start of the trajectory

Our program reads: for any $p \in [1, \infty)$,

$$GW_{\tau}(X,Y) := \inf_{\mu \in \mathcal{C}(\mu_X,\mu_Y)} \left(\int_{X \times Y} |d_X(r_X,x) - d_Y(r_Y,y)|^p \, d\mu(x,y) \right)^{1/p}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$$\mathcal{GW}_{\tau}(X,Y) := \inf_{\mu \in \mathcal{C}(\mu_X,\mu_Y)} \left(\int_{X \times Y} |d_X(r_X,x) - d_Y(r_Y,y)|^p \, d\mu(x,y)
ight)^{1/p}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

satisfies:

1. GW_{τ} is an upper bound of GW. **Open question:** $TLB \leq GW \leq GW_{\tau}$

$$\mathcal{GW}_{ au}(X,Y):=\inf_{\mu\in\mathcal{C}(\mu_X,\mu_Y)}\left(\int_{X imes Y}|d_X(r_X,x)-d_Y(r_Y,y)|^p\,d\mu(x,y)
ight)^{1/p}$$

satisfies:

- 1. GW_{τ} is an upper bound of GW. Open question: $TLB \leq GW \leq GW_{\tau}$
- 2. GW_{τ} is equivalent to Wasserstein distance between *local* distributions of distance (Mémoli 2011) at the start of each trajectory

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

$$\mathcal{GW}_{ au}(X,Y):=\inf_{\mu\in\mathcal{C}(\mu_X,\mu_Y)}\left(\int_{X imes Y}|d_X(r_X,x)-d_Y(r_Y,y)|^p\,d\mu(x,y)
ight)^{1/p}$$

satisfies:

- 1. GW_{τ} is an upper bound of GW. Open question: $TLB \leq GW \leq GW_{\tau}$
- 2. GW_{τ} is equivalent to Wasserstein distance between *local* distributions of distance (Mémoli 2011) at the start of each trajectory
- 3. GW_{τ} is a metric on the space of (certain) equivalence classes of trajectories

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

$$\mathcal{GW}_{\tau}(X,Y):=\inf_{\mu\in\mathcal{C}(\mu_X,\mu_Y)}\left(\int_{X\times Y}|d_X(r_X,x)-d_Y(r_Y,y)|^p\,d\mu(x,y)
ight)^{1/p}$$

satisfies:

- 1. GW_{τ} is an upper bound of GW. Open question: $TLB \leq GW \leq GW_{\tau}$
- 2. GW_{τ} is equivalent to Wasserstein distance between *local* distributions of distance (Mémoli 2011) at the start of each trajectory
- 3. GW_{τ} is a metric on the space of (certain) equivalence classes of trajectories

- ロ ト - 4 回 ト - 4 □

4. Similar construction is defined for graphs in *Le*, *Ho*, & *Yamada 2022*

$$\mathcal{GW}_{\tau}(X,Y) := \inf_{\mu \in \mathcal{C}(\mu_X,\mu_Y)} \left(\int_{X \times Y} |d_X(r_X,x) - d_Y(r_Y,y)|^p \, d\mu(x,y)
ight)^{1/p}$$

satisfies:

- 1. GW_{τ} is an upper bound of GW. Open question: $TLB \leq GW \leq GW_{\tau}$
- 2. GW_{τ} is equivalent to Wasserstein distance between *local* distributions of distance (Mémoli 2011) at the start of each trajectory
- 3. GW_{τ} is a metric on the space of (certain) equivalence classes of trajectories
- 4. Similar construction is defined for graphs in *Le*, *Ho*, & *Yamada 2022*
- 5. Can be computed in linear time (time series of the same length) or quadratic time (different lengths)

Performance of GW_{τ} distance between time series: EEG dataset

▲口▶▲圖▶▲≣▶▲≣▶ = 差 - 釣A@

Performance of GW_{τ} distance between time series: 1-Nearest Neighbor classification of UCR Time Series Classification Archive data (*Dau et al. 2018*)

Performance of GW_{τ} distance between time series: 3D Lotka-Volterra dynamical system (*Xiao & Li 2000*) simulated data

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … 釣ん()~.

Performance of GW_{τ} distance between time series: data from Dawes lab (*Ignacio et al. 2022*)

C. elegans zygote

Normal condition

Embedding result

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Averaging result: on the use of Fused Gromov-Wasserstein barycenters of *Vayer et al.* 2020

References

- 1. Dua, D., & Graff, C. (2017). UCI machine learning repository
- 2. Nagel, Sebastian. (2019) 10.15496/publikation-37739
- 3. Mémoli, F. (2011). Found. Comput. Math., 11 (4)
- 4. Peyré, G., Cuturi, M., Solomon, J. (2016). ICML, 48
- 5. Chowdhury, S., & Mémoli, F. (2019). Inf. Inference, 8(4)
- Weitkamp, C. A., Proksch, K., Tameling, C., & Munk, A. (2022). J. Am. Stat. Assoc.
- Dau, H.A., Keogh, E., Kamgar, K., Yeh, C.-C.M., Zhu, Y., Gharghabi, S., ... Hexagon-ML (2018, October). The UCR time series classification archive
- 8. Xiao, D., & Li, W. (2000) J. Diff. Equ., 164 (1)
- Ignacio, D. P., Kravtsova, N., Henry, J., Palomares, R. H., & Dawes, A. T. (2022). Cytoskeleton
- Coffman, V. C., McDermott, M. B., Shtylla, B., & Dawes, A. T. (2016) *Mol. Biol. Cell* 27(22)
- 11. Vayer, T., Chapel, L., Flamary, R., Tavenard, R., & Courty, N. (2020) Algorithms, 13 (9)

Acknowledgements and Funding

Paper: Kravtsova, McGee II, Dawes (2023), *Bull. Math. Biol.* Authors thank:

Anonymous reviewer Members of the Dawes Lab:

Will Burks Ashley Castelloe Andrew Cohen Arkaprovo Ghosal David Ignacio Graham Mackey Liam O'Brien Shayne Plourde Nethan Ramachandran Caroline Tatsuoka

Members of the Chamberlin Lab

Work supported by National Institutes of Health (NIH) award to Adriana T. Dawes

Upcoming SMB 2023 presentations from Dawes Lab

Thursday at 6:00, Archie Griffin Ballroom:

Liam O'Brien Changes in Approximate Symmetries of a Parametrized Turing Pattern Poster ID MFBM-10

Caroline Tatsuoka Data Driven Modeling of Biological Systems with Deep Neural Networks Poster ID MFBM-17

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

End of Presentation

Thank you!

Questions?

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @